skip to main content


Search for: All records

Creators/Authors contains: "Church, Derek C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Progress in the field of soft devices—that is, the types of haptic, robotic, and human-machine interfaces (HRHMIs) in which elastomers play a key role has its basis in the science of polymeric materials and chemical synthesis. However, in examining the literature, it is found that most developments have been enabled by off-the-shelf materials used either alone or as components of physical blends and composites. A greater awareness of the methods of synthetic chemistry will accelerate the capabilities of HRHMIs. Conversely, an awareness of the applications sought by engineers working in this area may spark the development of new molecular designs and synthetic methodologies by chemists. Several applications of active, stimuli-responsive polymers, which have demonstrated or shown potential use in HRHMIs are highlighted. These materials share the fact that they are products of state-of-the-art synthetic techniques. The progress report is thus organized by the chemistry by which the materials are synthesized, including controlled radical polymerization, metal-mediated cross-coupling polymerization, ring-opening polymerization, various strategies for crosslinking, and hybrid approaches. These methods can afford polymers with multiple properties (i.e., conductivity, stimuli-responsiveness, self-healing, and degradable abilities, biocompatibility, adhesiveness, and mechanical robustness) that are of great interest to scientists and engineers concerned with soft devices for human interaction. 
    more » « less
  2. null (Ed.)
    Progress in the field of soft devices–that is, the types of haptic, robotic, and human-machine interfaces (HRHMIs) in which elastomers play a key role–has its basis in the science of polymeric materials and chemical synthesis. However, in examining the literature, it is found that most developments have been enabled by off-the-shelf materials used either alone or as components of physical blends and composites. A greater awareness of the methods of synthetic chemistry will accelerate the capabilities of HRHMIs. Conversely, an awareness of the applications sought by engineers working in this area may spark the development of new molecular designs and synthetic methodologies by chemists. Several applications of active, stimuli-responsive polymers, which have demonstrated or shown potential use in HRHMIs are highlighted. These materials share the fact that they are products of state-of-the-art synthetic techniques. The progress report is thus organized by the chemistry by which the materials are synthesized, including controlled radical polymerization, metal-mediated cross-coupling polymerization, ring-opening polymerization, various strategies for crosslinking, and hybrid approaches. These methods can afford polymers with multiple properties (i.e., conductivity, stimuli-responsiveness, self-healing, and degradable abilities, biocompatibility, adhesiveness, and mechanical robustness) that are of great interest to scientists and engineers concerned with soft devices for human interaction. 
    more » « less
  3. Ring opening metathesis polymerization (ROMP) is widely considered an excellent living polymerization technique that proceeds rapidly under ambient conditions and is highly functional group tolerant when performed in organic solvents. However, achieving the same level of success in aqueous media has proved to be challenging, often requiring an organic co-solvent or a very low pH to obtain fast initiation and high monomer conversion. The ability to efficiently conduct ROMP under neutral pH aqueous conditions would mark an important step towards utilizing aqueous ROMP with acid-sensitive functional groups or within a biological setting. Herein we describe our efforts to optimize ROMP in an aqueous environment under neutral pH conditions. Specifically, we found that the presence of excess chloride in solution as well as relatively small changes in pH near physiological conditions have a profound effect on molecular weight control, polymerization rate and overall monomer conversion. Additionally, we have applied our optimized conditions to polymerize a broad scope of water-soluble monomers and used this methodology to produce nanostructures via ring opening metathesis polymerization induced self-assembly (ROMPISA) under neutral pH aqueous conditions. 
    more » « less
  4. Abstract

    Cell‐based therapies are gaining prominence in treating a wide variety of diseases and using synthetic polymers to manipulate these cells provides an opportunity to impart function that could not be achieved using solely genetic means. Herein, we describe the utility of functional block copolymers synthesized by ring‐opening metathesis polymerization (ROMP) that can insert directly into the cell membrane via the incorporation of long alkyl chains into a short polymer block leading to non‐covalent, hydrophobic interactions with the lipid bilayer. Furthermore, we demonstrate that these polymers can be imbued with advanced functionalities. A photosensitizer was incorporated into these polymers to enable spatially controlled cell death by the localized generation of1O2at the cell surface in response to red‐light irradiation. In a broader context, we believe our polymer insertion strategy could be used as a general methodology to impart functionality onto cell‐surfaces.

     
    more » « less
  5. Abstract

    Cell‐based therapies are gaining prominence in treating a wide variety of diseases and using synthetic polymers to manipulate these cells provides an opportunity to impart function that could not be achieved using solely genetic means. Herein, we describe the utility of functional block copolymers synthesized by ring‐opening metathesis polymerization (ROMP) that can insert directly into the cell membrane via the incorporation of long alkyl chains into a short polymer block leading to non‐covalent, hydrophobic interactions with the lipid bilayer. Furthermore, we demonstrate that these polymers can be imbued with advanced functionalities. A photosensitizer was incorporated into these polymers to enable spatially controlled cell death by the localized generation of1O2at the cell surface in response to red‐light irradiation. In a broader context, we believe our polymer insertion strategy could be used as a general methodology to impart functionality onto cell‐surfaces.

     
    more » « less